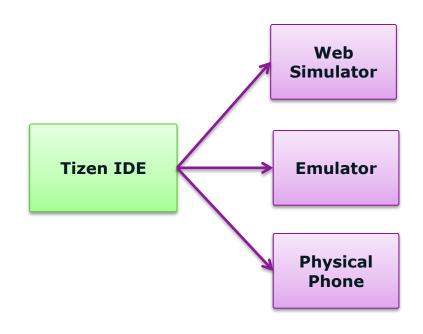
T DEVELOPER CONFERENCE MAY 7-9, 2012

Design and Implementation of Tizen Emulator

Yeongkyoon Lee and Hyun-goo Kang S-Core Co., Ltd.

Contents

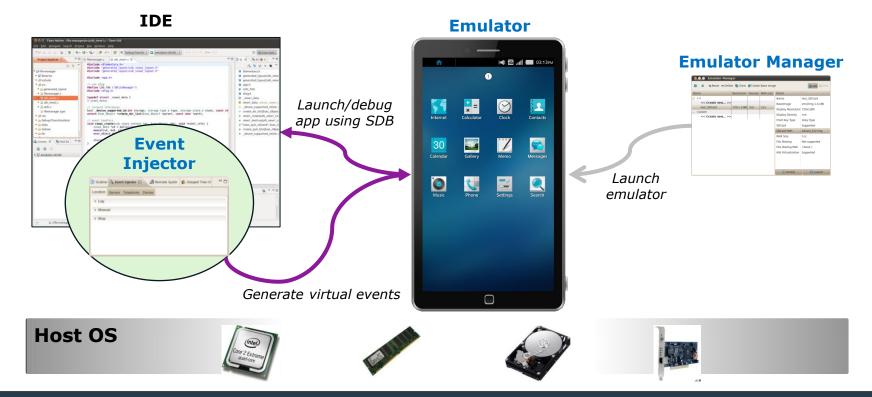
- Introduction
- Key Design Concepts
- Tizen Virtual Board
- Advanced Functionalities
- Conclusion



Introduction

Tizen Development Runtime

- Web simulator
 - For web applications
 - Support oneshot web runtime
- Emulator
 - For web/native applications and platforms
 - Support full system runtime
- Physical phone
 - For web/native applications and platforms including BSP (Board Support Package)
 - Support full system runtime



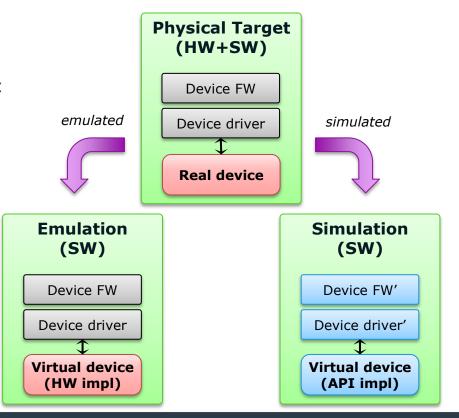
Tizen Emulator Tools (1/2)

- Tizen emulator tools
 - Provide development environment for Tizen platform/app w/o real physical devices
 - Consist of QEMU based Emulator, Emulator manager and Event injector
 - Provide interoperation with **Tizen IDE** using **SDB** (Smart Development Bridge)
 - Currently, support x86 guest arch only

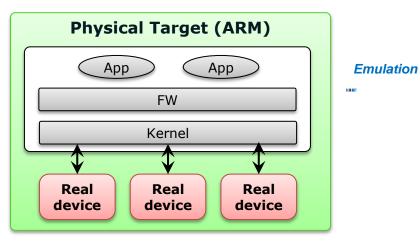
Tizen Emulator Tools (2/2)

Features Summary

Tizen emulator features compared to physical targets or other emulators


Category	Pros	Cons
Usability	 Easy to get (just download SDK) Configurable devices and skin Various virtual device input support Multi-instance support for emulator Host directory sharing 	
Performance	Capability of HW VT accelerationCodec and GLES accelerationvirtio	
Compatibility		 Not all devices are fully supported e.g. WiFi, BT, radio, etc.

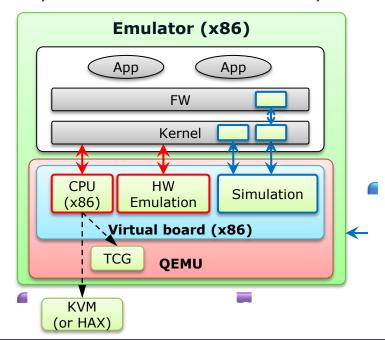
Key Design Concepts


Emulation vs. Simulation

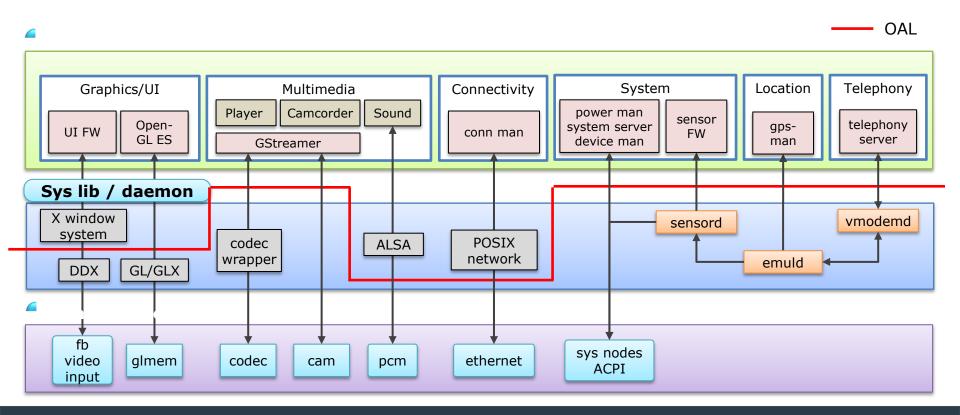
- Emulation
 - Strict implementation of device spec
 - No guest modification
 - Conventional approach of QEMU
 - Poor performance and flexibility
- Simulation
 - API-centric implementation
 - Guest modification needed
 - e.g. virtio

Hybrid Emulation

"HW emulation + simulation" for better performance and flexibility



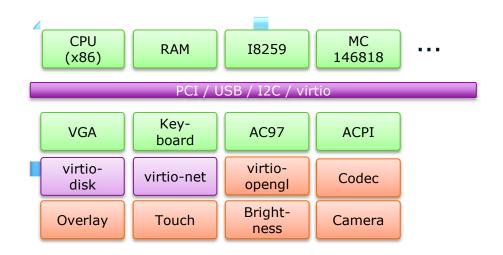
VCPU: Virtual CPU


KVM: Kernel Virtual Machine

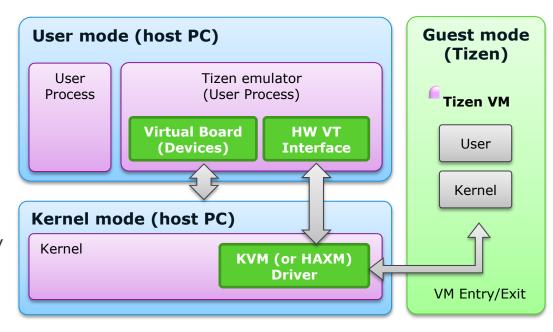
HAX: Hardware Accelerated eXecution

TCG: Tiny Code Generator

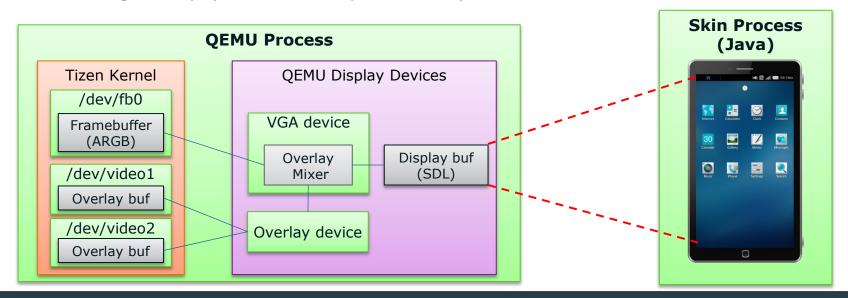
OEM Abstraction Layer



Tizen Virtual Board

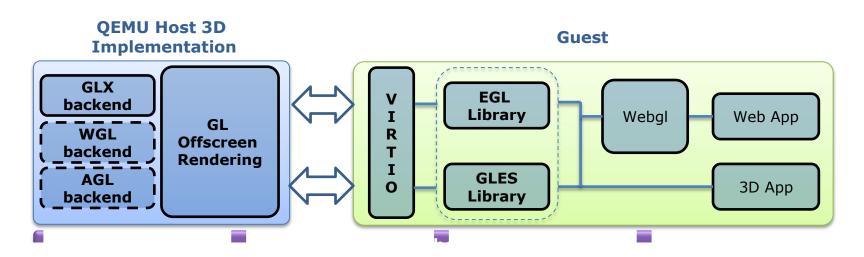

Virtual Board Overview

- Tizen virtual board provides virtual HW devices
- Board constructions
 - QEMU PC board
 - Intel Pentium II chipset + devices
 - virtio devices from QEMU
 - virtio-disk, virtio-net and virtio-9p
 - New devices from Tizen
 - virtio-opengl
 - Overlay, codec, camera, multi-touch, etc.

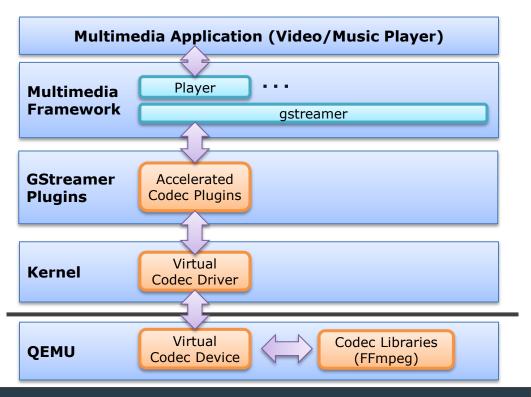

Execution with HW VT Acceleration

- High performance w/ HW VT support
 - Intel VT-x or AMD-V
 - Special kernel driver needed: KVM in Linux and HAXM in Windows
- Additional performance considerations
 - Removing core affinity from Windows
 - Optimization for guest memory access
 - Separate display thread

Skin/Display


- Emulator skin with high portability/usability written in Java
- Display devices based VGA
 - VGA device (1 framebuffer) + Overlay device (2 overlay buffers)
 - Sharing SDL display buffer between QEMU and skin processes

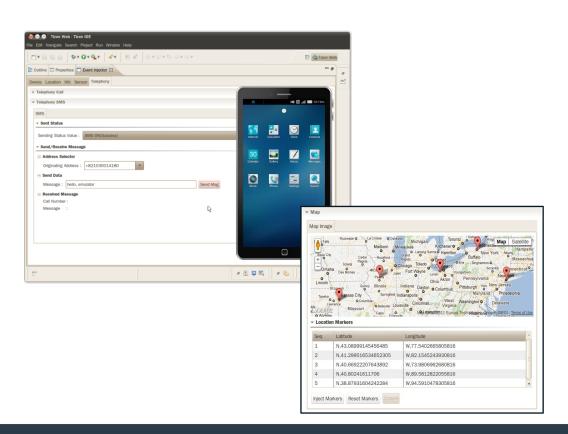
tizen.org


GLES Acceleration

- Support OpenGLES/EGL APIs with high performance
- GLES/EGL calls are performed in offscreen rendering by host GPU if it exists
 - gl command passing to QEMU via virtio
 - gl command buffering to avoid copy-back overhead

Codec Acceleration

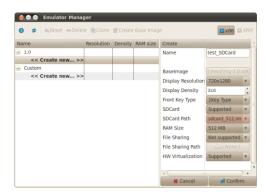
- Support video playing even w/o HW VT support
 - Typically, QEMU TCG is not fast enough to run guest video codec
- AV Codec API delegation to host

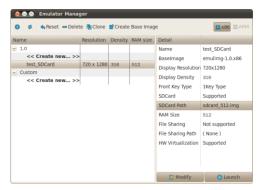


Advanced Functionalities

Event Injector

- Rich event injection for ease of test
 - Sensors
 - Accelerometer
 - Gyroscope
 - Geomagnetic
 - Proximity
 - Light
 - Motion
 - Location
 - Manual/Map/Log file
 - Telephony
 - Call/SMS (from/to event injector)
 - NFC
 - NDEF message
 - NFC Tag
 - P2P
 - Device
 - Battery level
 - Earjack
 - USB
 - RSSI


Host Directory Sharing


- Directory sharing between host PC and Tizen guest
 - Useful for large size of resource files (e.g. multimedia files)
 - No need to upload files to guest via ssh
 - No worries about guest disk size
- Implementation via network file sharing
 - For Linux host
 - virtio 9p protocol
 - For Windows host
 - Samba protocol (Windows7 needs ID/PW according to security policy)

Emulator Manager

- Provides interfaces to experience various emulator targets and to test portability
 - VM management including file system images and HW configurations
 - VM (Virtual Machine): a set of configuration for Tizen guest
- Supports configurable virtual HWs
 - Display resolution: HVGA / WVGA / WSVGA / HD
 - Display density (DPI)
 - RAM size
 - Front key type
- Saves disk spaces for Tizen guests using QCOW2
 - QCOW2 (QEMU Copy-On-Write 2) image format
 - "Read-only base image" / "Read-writable image" pair
 - Multiple images can share a same base image

Conclusion

- Hybrid emulation is effective for mobile emulator
 - Flexible to support various mobile devices with high performance
 - OpenGL / Codec performance (Ubuntu 11.04, Intel i7 3.4GHz, 4GB RAM)
 - Webgl fpstest (fps): 0 (guest mesa w/o VT) → 6 (w/o VT), 20 (w/ VT)
 - H.264 decoder (fps): 0 (guest codec w/o VT) → 3.7 (w/o VT), 22.4 (w/ VT)
- x86 guest boosts up emulator performance with HW VT support
 - Execution performance (Windows7, Intel i7 2.93GHz, 4GB RAM)
 - Booting time (sec): 57 (w/o VT) → 17 (w/ VT)
 - CoreMark (iteration/sec): 910 (w/o VT) → 8450 (w/ VT)
 - SunSpider (msec): 6540.5 (w/o VT) → 575.2 (w/ VT)
- Event injector is user-friendly enough to test various virtual events
- Emulator manager provides interfaces to experience various emulator targets and to test portability

