

Ryan Ware Lead Security Architect

INTEL OPEN SOURCE TECHNOLOGY CENTER

The Onslaught Is Coming

Connectivity Evolution

No IP Connectivity

- A/V Input
- CD
- DVD
- Analog Radio

Threat Space

2002 Honda Odyssey

Completely Self Contained

Connectivity Evolution

Threat Space

- Digital Music
- Traffic Data
- A/V Input
- USB
- Bluetooth
- CD
- Analog Radio

Mostly Self Contained

Connectivity Evolution

Threat Space

- Internet Music
- Interactive Navigation
- App Store
- Cellular, WiFi & Bluetooth
- Arbitrary Applications
- ECU Data Connectivity

Absolutely No Containment

Who Are We Protecting From?

Not Your Mother's Hacker

Why Has Windows Been The Largest Target?

Approximate Install Base	EOY 2011
Linux Desktop	8M
Android Tablet	13M
iPad	40M
Mac OS X	57M
iPhone	112M
Android Phone	234M
Windows 7	400M
Windows (all)	1.25B

As a software developer trying to make money, what is your choice?

Choice for malware developer is same as for any other kind of developer!

One of the primary ways a malware author makes money is to create a botnet and then lease it to spammers

Then Why Mac OS X Flashback?

- Some market share increase.
 - Increasing numbers **does** mean potential for increased money
- However, **primary** motivation is fame.
 - Apple's \$70B brand name generates news
 - Currently 2,640,000 Google hits for "Mac OS X Flashback malware trojan"
- Apple has shipped their 3rd security update for this issue

All this over 600,000 infected Macs; 1.05% of estimated install base

Magical Year of 2003

Red Hat Linux 9

- Kernel 2.4.20
 - POSIX Thread Library (NPTL)
 - Beta ACPI Support
 - Access Control Lists & Extended Attributes
 - User Mode Linux
- XFree86 4.3.0
 - Pre Xorg
- GNOME 2.2
 - 18 Major releases old
- KDE 3.1
 - 3.x codeline defunct
- Mozilla 1.2.1
 - Pre Firefox
- OpenSSL 0.9.7a
 - 12 versions old
 - No 0.9.7x updates since 2006

What Are These CVE, CVSS and CWE Things?

- Common Vulnerability & Exposures (CVE)
 - Started in 1999 by MITRE Corporation
 - Keeps a database of all *publicly* known computer security defects
 - Since 1999: 49,856 registered security defects
 - Average of 7 vulnerabilities per day
- Common Vulnerability Scoring System (CVSS)
 - Industry standard method of assessing severity of computer security vulnerabilities based on measurement and expert assessment.
 - Widely Adopted
 - 0.0 3.9: Low severity
 - 4.0 6.9: Medium severity
 - 7.0 10.0: High severity
- Common Weakness Enumeration (CWE)
 - Sponsored by MITRE
 - Formal list of software weakness types
 - Buffer Overflows, Structure & Validity Problems, Channel & Path Errors, etc.

Wheel of Linux Kernel Fortune!!!

Number of Vulnerabilities:

- 2003: 19
- 2004: 51
- 2005: 133
- 2006: 90
- 2007: 63
- 2008: 70
- 2009: 105 2010: 124 2011: 83

Average 1.53 CVE/Week Over 9 Years

Linux Kernel Details

Year	# of Vuln	DoS	Code Execution	Overflow	Memory Corruption	Bypass Something	Gain Information	Gain Privilege
2003	19	8		2		1	3	4
2004	51	20	5	12			5	12
2005	133	90	19	19	1	6	5	7
2006	90	61	5	7	7	5	3	3
2007	63	41	2	8		3	7	7
2008	70	44	3	17	4	4	6	10
2009	105	66	2	22	7	8	11	22
2010	124	67	3	16	7	8	30	14
2011	83	62	1	21	10	1	21	9
Total	738	459	40	124	36	36	91	88

Critical Linux Kernel Defects (CVEE Scores 8-10)

- CVE-2003-0959: Denial of service or root privilege escalation
 - Multiple overflows in 32bit emulation
- CVE-2004-1017: Arbitrary code execution
 - Multiple overflows in io_edgeport driver
- CVE-2004-1137: Denial of service or arbitrary code execution
 - Multiple vulnerabilities in Internet Group Management Protocol (IGMP) handling
- CVE-2006-1368: Denial of service
 - Buffer overflow in USB Gadget RNDIS implementation
- CVE-2006-1523: Arbitrary code execution
 - Vulnerability in __group_complete_signal function in RCU signal handling
- CVE-2006-1857: Denial of service or arbitrary code execution
 - Buffer overflow in Stream Control Transmission Protocol (SCTP)
- CVE-2006-6535: Denial of service
 - dev_queue_xmit function can fail before calling local_bh_disable
- CVE-2008-1673: Denial of service or arbitrary code execution
 - Multiple vulnerabilities in asn1 implementation
- CVE-2008-3496: Arbitrary code execution
 - Buffer overflow in format descriptor parsing in uvc_parse_format

Critical Linux Kernel Defects (CVEE Scores 8-10)

- CVE-2008-3915: Arbitrary code execution
 - Buffer overflow in NFSv4 implementation
- CVE-2008-4395: Arbitrary code execution
 - Multiple buffer overflows in ndiswrapper module
- CVE-2008-5134: Denial of service
 - Buffer overflow in wireless driver function lbs_process_bss
- CVE-2009-0065: Denial of service
 - Buffer overflow in Stream Control Transmission Protocol (SCTP)
- CVE-2009-4538: Denial of service
 - Improper checks in e1000e driver
- CVE-2010-2495: Denial of service or arbitrary code execution
 - Improper check in L2TP driver
- CVE-2010-2521: Denial of service or arbitrary code execution
 Multiple buffer overflows in XDR implementation of NFS server
- CVE-2010-3705: Denial of service
 - Improper validation of hmac_ids array of an SCTP peer
- CVE-2011-2497: Denial of service or arbitrary code execution
 - Integer underflow in Bluetooth driver

This Was Just The Linux Kernel!

Only **1** of the packages for our hypothetical, 2003 era system!

How To Protect Ourselves

Reduce Attackable Surface Area

- Do not include unused functionality!
- Install services only used by your product
- Expose only limited, well documented interfaces
- Remove Debug Interfaces
- There is no such thing as a "Private" interface
- Included functionality not used by the product is simply additional areas for a hacker to attack

Least Privilege

- Security Principle of only giving the needed privilege.
- It is of course easier to just run everything as root!
 - Even have less in the way if you just run in the kernel
- When your software fails, not running as root means you have additional protections
- Very little software needs to actually mmap() to entire physical address space

Use Compiler Defenses

- -Wformat -Wformat-security -Werror=format-security
 - Provides warnings about potential security holes.
 trivial.c: In function 'main':
 trivial.c:16: warning: format not a string literal and no format arguments
- -fstack-protector-all
 - Provides canary based buffer overflow checks on the stack
 - Shuts application down with corrupt stack
- -D_FORTIFY_SOURCE=2
 - Silently replaces unbounded string function calls with bounded ones
 - Only done where gcc can determine the buffer size
- -fpic & -fpie
 - Generate position independent code for libraries (-fpic) and executables (-fpie).
 - Protects against "return to libc" attacks
- NX (XD) Bit
 - Utilize the No eXecute (or eXecute Disable) bit where possible.
 - 32-bit Intel needs PAE

Mandatory Access Controls

- Access control enforcement that supersedes Linux Discretionary Access Control (DAC)
- Many Different Linux Security Modules that enforce MAC
 SELinux, Smack, TOMOYO, etc.
- Tizen and MeeGo have utilized Simplified Mandatory Access Control Kernel (Smack)
 - SELinux Reference Policy more than 900,000 lines
 - SEAndroid Reference Policy is one quarter in size, but pressure already trying to grow it
 - Smack allows creation of an arbitrary number of security domains keeping things simple unless necessary
 - Example: 32 different security domains with 100 lines of Smack rules
- Smack support recently added to:
 - Dbus
 - Xorg
 - udev

Systemd & Cgroups

- Systemd is replacement for System V init daemon providing more efficient startup and process control
- Cgroups allows resource limits on processes or process groups
- Systemd automatically places system services and groups of services into appropriate cgroups
- Ensures misbehaving processes can be controlled and shut down
- Potentially include Linux Containers-like features

Linux Containers (LxC)

- Userland Application to configure Linux Kernel isolation features
- Not a virtualization solution
 - Does not protect from user to kernel privilege escalation attacks
- Allows isolating processes in different ways:
 - Process Namespace: Isolate processes from seeing one another
 - IPC Namespace: Ensures processes cannot share IPC's
 - UID Namespace: Separate UID tables
 - Network Namespace: Separate network devices
 - UTSName Namespace: Separate host names
 - Mount Namespace: Separate mounted devices
- Can be combined with filesystem snapshots (btrfs) to create disposable environments

Integrity

- Integrity Measurement Architecture
 - Provides runtime filesystem integrity
 - Keeps hash of all files in kernel memory
 - Kernel verifies hash on file open
- Extended Verification Module
 - Provides offline filesystem integrity
 - Keeps HMAC of file extended attributes and hash
 - Depends on HW security subsystem (TPM)
- DM-Integrity
 - Addition to DM-Crypt
 - Extends to use HMAC over files
 - Depends on HW security subsystem

Summary

- The environment we're deploying products into is not changing for the better
- Supporting a product lifetime of 10 years provides unique difficulties
- Many different technologies and techniques to improve our protection:
 - Attack Surface Reduction
 - Least Privilege
 - Mandatory Access Controls
 - Systemd
 - Cgroups
 - Linux Containers
 - Integrity

INTEL OPEN SOURCE TECHNOLOGY CENTER