
Experiences Developing
a Wayland-Based Tizen

IVI HMI

Ossama Othman

2

Context

•  Provide human-machine interface (HMI) better suited for Tizen
IVI
•  Driver safety
•  React to vehicle state

•  Options
•  Leverage existing user interfaces: mobile, desktop
•  Develop IVI-specific HMI

3

Problems

•  Mobile and desktop user interfaces
•  Suboptimal screen geometry: resolution, orientation
•  Do not react to vehicle state
•  Not safe for drivers
•  Many features are not useful or suitable for IVI
•  Underlying graphics subsystem may be too large or

slow
•  Develop IVI-specific HMI

•  May require kernel and graphics hardware
expertise

•  May require additional resources for in-house
development

•  Cost

Kernel

KMS evdev

DRM Graphics	 Driver

Hardware

Graphics Input

User	 Space

Compositor Input	 Framework

4

Solution

•  Develop IVI HMI by leveraging Wayland and HTML5/JS
•  Efficient

•  Lightweight

•  Rapid prototyping

•  Simple architecture

•  Open-source
•  Avoids legacy issues with mobile and desktop

HMI
Components

6

HMI Service

•  Provides “home screen”
•  Facilitates layout of application graphical surfaces
•  Out of scope

•  Application lifecycle, sound and input management

7

Compositor

•  Handles interactions with graphics hardware
•  Combines and renders multiple graphical “surfaces” into an

image displayed on-screen
•  Wayland

•  Core compositor protocol used by IVI HMI
•  Additional IVI HMI-specific Wayland-based protocols to be defined

•  Weston
•  Reference Wayland compositor
•  HMI will leverage extensibility to fill feature gaps

8

Application Run-time

•  Provides reusable set of functionality to applications
•  HTML5

•  Webkit
•  Web API implementations
•  Toolkits

•  Native
•  C library
•  Middleware
•  Toolkits

9

Client Application

•  Draws surfaces in a buffer
•  Cairo
•  OpenGL
•  etc

•  Shares buffer with compositor through Wayland
•  Examples

•  Media player
•  Browser

10

Component Interaction

HMI
Server Side

12

Server Side Architectures

•  HMI Service
•  Stand-alone
•  Integrated

•  Server side architecture remains transparent to the client
•  Just an implementation detail from the client point of view
•  Client does not determine where surfaces are placed

13

Stand-alone HMI Service

•  HMI service is another Wayland
based client

•  Separate process from compositor
•  Communicates with compositor

just as client application would
•  Example: GENIVI style layer

management

14

Integrated HMI Service

•  HMI Service integrated with
compositor
•  Embedded directly in compositor

plugin
•  Performs same functions as stand-

alone service

15

HMI Server Side Architecture Comparison

Pros Cons

Stand-alone Integrated Stand-alone Integrated

Reusable / Flexible Simpler architecture Flexibility may not be
needed

Fatal error recovery may
be more difficult

Better fatal error recovery More efficient: less IPC Less efficient: more IPC
Potentially easier to
compromise compositor
state

Rapid prototyping

HMI Server
Side Problems

17

Problem: Layout of Both Web and Native Applications

•  HTML5 based HMI cannot readily place surfaces created by
native application

•  HMI is generally layer based
•  Layer is a collection of surfaces
•  Sample layers: home screen decorations, input layer, split “screens”

•  No concept of layers in HTML5
•  May be emulated using multiple HTML5 Canvases

•  Canvas based approach not always suitable
•  Not all Web applications use Canvases
•  Cannot be used for native applications

18

Solution

•  Compositor
•  Plugin exposes layer functionality required by HMI

•  Web run-time
•  Plugin provides JavaScript API that allows interaction with the

compositor
•  HMI alternatives

•  Use WebSockets to communicate between compositor plugin and
HTML5 based HMI

•  IVI-specific Node.js extensions

19

Other Problems

•  Direct use of wl_shell in application or toolkit
•  Specific to desktop shell model / use case
•  Not entirely applicable to IVI
•  Compositor wl_shell implementation may not be available
•  Proposal for better handling of different Wayland shell types currently

under review upstream

20

References

•  Tizen IVI Images
•  Daily: http://download.tizen.org/releases/daily/2.0alpha/ivi-wayland/
•  Snapshots: http://download.tizen.org/snapshots/2.0alpha/ivi-wayland/
•  Tizen 3.0 based IVI images are a work in progress

•  Wayland and Weston
•  http://wayland.freedesktop.org/
•  http://cgit.freedesktop.org/wayland

•  GENIVI®
•  http://www.genivi.org/
•  http://projects.genivi.org/ivi-layer-management/

21

Legal

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR OTHER
INTELLECTUAL PROPERTY RIGHT.

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

All dates provided are subject to change without notice.

Intel is a trademark of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2013, Intel Corporation. All rights are protected.

