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Context 

•  Provide human-machine interface (HMI) better suited for Tizen 
IVI 
•  Driver safety 
•  React to vehicle state 

•  Options 
•  Leverage existing user interfaces: mobile, desktop 
•  Develop IVI-specific HMI 
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Problems 

•  Mobile and desktop user interfaces 
•  Suboptimal screen geometry: resolution, orientation 
•  Do not react to vehicle state 
•  Not safe for drivers 
•  Many features are not useful or suitable for IVI 
•  Underlying graphics subsystem may be too large or 

slow 
•  Develop IVI-specific HMI 

•  May require kernel and graphics hardware 
expertise 

•  May require additional resources for in-house 
development 

•  Cost 
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Solution 

•  Develop IVI HMI by leveraging Wayland and HTML5/JS 
•  Efficient 

•  Lightweight 

•  Rapid prototyping 

•  Simple architecture 

•  Open-source 
•  Avoids legacy issues with mobile and desktop 



HMI 
Components 
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HMI Service 

•  Provides “home screen” 
•  Facilitates layout of application graphical surfaces 
•  Out of scope 

•  Application lifecycle, sound and input management 
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Compositor 

•  Handles interactions with graphics hardware 
•  Combines and renders multiple graphical “surfaces” into an 

image displayed on-screen 
•  Wayland 

•  Core compositor protocol used by IVI HMI 
•  Additional IVI HMI-specific Wayland-based protocols to be defined 

•  Weston 
•  Reference Wayland compositor 
•  HMI will leverage extensibility to fill feature gaps 
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Application Run-time 

•  Provides reusable set of functionality to applications 
•  HTML5 

•  Webkit 
•  Web API implementations 
•  Toolkits 

•  Native 
•  C library 
•  Middleware 
•  Toolkits 
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Client Application 

•  Draws surfaces in a buffer 
•  Cairo 
•  OpenGL 
•  etc 

•  Shares buffer with compositor through Wayland 
•  Examples 

•  Media player 
•  Browser 
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Component Interaction 



HMI 
Server Side 
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Server Side Architectures 

•  HMI Service 
•  Stand-alone 
•  Integrated 

•  Server side architecture remains transparent to the client 
•  Just an implementation detail from the client point of view 
•  Client does not determine where surfaces are placed 
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Stand-alone HMI Service 

•  HMI service is another Wayland 
based client 

•  Separate process from compositor 
•  Communicates with compositor 

just as client application would 
•  Example: GENIVI style layer 

management 
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Integrated HMI Service 

•  HMI Service integrated with 
compositor 
•  Embedded directly in compositor 

plugin 
•  Performs same functions as stand-

alone service 
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HMI Server Side Architecture Comparison 

Pros Cons 

Stand-alone Integrated Stand-alone Integrated 

Reusable / Flexible Simpler architecture Flexibility may not be 
needed 

Fatal error recovery may 
be more difficult 

Better fatal error recovery More efficient: less IPC Less efficient: more IPC 
Potentially easier to 
compromise compositor 
state 

Rapid prototyping 
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Problem: Layout of Both Web and Native Applications 

•  HTML5 based HMI cannot readily place surfaces created by 
native application 

•  HMI is generally layer based 
•  Layer is a collection of surfaces 
•  Sample layers: home screen decorations, input layer, split “screens” 

•  No concept of layers in HTML5 
•  May be emulated using multiple HTML5 Canvases 

•  Canvas based approach not always suitable 
•  Not all Web applications use Canvases 
•  Cannot be used for native applications 
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Solution 

•  Compositor 
•  Plugin exposes layer functionality required by HMI 

•  Web run-time 
•  Plugin provides JavaScript API that allows interaction with the 

compositor 
•  HMI alternatives 

•  Use WebSockets to communicate between compositor plugin and 
HTML5 based HMI 

•  IVI-specific Node.js extensions 
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Other Problems 

•  Direct use of wl_shell in application or toolkit 
•  Specific to desktop shell model / use case 
•  Not entirely applicable to IVI 
•  Compositor wl_shell implementation may not be available 
•  Proposal for better handling of different Wayland shell types currently 

under review upstream 
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References 

•  Tizen IVI Images 
•  Daily: http://download.tizen.org/releases/daily/2.0alpha/ivi-wayland/ 
•  Snapshots: http://download.tizen.org/snapshots/2.0alpha/ivi-wayland/ 
•  Tizen 3.0 based IVI images are a work in progress 

•  Wayland and Weston 
•  http://wayland.freedesktop.org/ 
•  http://cgit.freedesktop.org/wayland 

•  GENIVI® 
•  http://www.genivi.org/ 
•  http://projects.genivi.org/ivi-layer-management/ 
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