

Crosswalk Security on Tizen 3.0

Xu Zhang(xu.u.zhang@intel.com)

Agenda

- Tizen 3.0 Security Overview
- Crosswalk Overview
- Crosswalk Security Features
- Conclusion
- Contribute to Crosswalk

Tizen 3.0 Security Overview

The Objectives:

- Protect user data
- Protect system resources (including the network)
- Provide application isolation

Tizen 3 provide key security features:

- Discretionary Access Control (DAC)
- Mandatory Access Control (MAC) with the kernel LSM SMACK
- Cynara the permission management and check service
- Security manager

Crosswalk Overview

Crosswalk Share Process Mode for Per User

Crosswalk Security Features

Relationship with Tizen 3.0 security

Build over: SMACK, Cynara and security manager

Goals of Crosswalk Security:

- Keep sensitive resource and data safely
- Web applications should be run with least privileges
- Web applications are sandboxed so they can only see their own resources
- Mitigate a broad class of content injection vulnerabilities, such as cross-site scripting (XSS) attacks

Features

- API access control
- Web widget application signing
- CSP (Content Security Policy)
- WARP (Widget Access Request Policy)

API Access Control

API Access Control - Crosswalk Installer

API Access Control - Crosswalk Installer (Cont.)

General flow of installing web application

- 1. Crosswalk installer unzip Crosswalk web application package
- 2. Crosswalk installer verify signature of the package
- 3. Crosswalk extract permissions list from config.xml
- 4. According to privilege level, Crosswalk filter invalid permissions out of permissions list
- 5. Crosswalk installer calls security-manager to insert policies and set SMACK label to resource files

API Access Control – Launcher

API Access Control – Launcher (Cont.)

General flow of launching web application

- 1. User trying to launch an application by clicking the application icon in home screen or another application throwing an intent to launch web app.
- 2. The launchpad_daemon fork a child process xwalk-launcher and xwalk-launcher create a new xwalk extension process instance
- 3. xwalk-launcher send an dbus message to running application manager (Browser process). Application manager launch web application and start a new render view(render process)

API Access Control – Runtime Check

API Access Control – Runtime Check (Cont.)

- General flow of checking API access in browser process
 - 1. When sensitive W3C JS API is invoked, render process send IPC to browser process
 - 2. Browser process request Cynara to check API permission
 - 3. Cynara return ALLOW/DENY to browser process
 - 4. If the operation is allowed, browser process access Tizen system service

Application Signing

- Tizen application must be signed with 2 signatures:
 - Author signature
 - Distributor signature
- Based on W3C recommendations for XML digital signature
- Crosswalk verifies that the application has been properly signed with the certificate
- Decide privilege level of web application
 - Platform
 - Partner
 - Public
 - Untrusted

Content Security Policy (CSP)

- CSP works as a whitelisting mechanism for resources loaded or executed by web applications
- Policy applies to a wide variety of resources
- The policy is defined via the application's manifest as follows

```
{
    ...,
    <tizen:content-security-policy>script-src 'self'</tizen:content-security-policy>
    ...
}
```

CSP support in Crosswalks is based on Chromium and Blink implementation

Widget Access Request Policy (WARP)

- All network accesses by widgets are denied by default
- A widget must declare in its manifest which network resources it will access (such as XMLHttpRequest, iframe, img, script, etc.)
- <access> element in config.xml. Developers can specify protocols, domains, and sub-domains.

```
<widget xmlns="http://www.w3.org/ns/widgets">
...
...
<access origin=https://example.net subdomains="true" />
<access origin=http://example.com subdomains="false"/> />
...
</widget>
```


Conclusion

To developers:

- You need to declare the required permissions in the manifest
- Declare the minimum set of permissions you really need
- Pay attention to proper error handling in your application

Acknowledgements

 Thanks the contribution from Terri Oda, Casey Schaufler, Xinchao He, Yongkang You and Peter Wang

Contribute to Crosswalk

Project website:

https://crosswalk-project.org

Mail list:

- crosswalk-help
- crosswalk-dev

IRC

#crosswalk atirc://freenode.net

Bug Track:

https://crosswalk-project.org/jira/

Question?

