
Telephony Framework in Tizen 2.1:
What’s new?

Harish Bishnoi, Philippe Nunes

2

Agenda

●  Introduction
●  Architecture
●  Tizen2.1 Features
●  Call Flows
●  Porting Telephony
●  Future work

Introduction

4

Introduction | Feature Overview

●  Offers rich functionalities
§  Voice Call and Messaging services
§  Supplementary services, USSD
§  SIM, Phonebook, SAT
§  Packet and A-GPS services
§  Network services (LTE, 3G/2G)

●  Plug-in based Architecture

§  Modem Agnostic
§  Flexible and easily customizable as per OEM needs

5

Introduction | Feature Overview

●  Commercial ready
●  Verified on Ref.Device-210 and Ref.Device-PQ
●  Verified on Intel Medfield device

●  License
●  Apache License Version 2.0

●  Reference plugin available
●  AT commands (3GPP 27.007/ 27.010) based plugin

Architecture

7

Architecture | Definitions
●  Core Objects

●  Executable components of a Telephony Module (SIM, CALL, SS, etc.).
●  Bundle of functions and supportive database information designated to the

Module.
●  Template Core Objects

●  Non-Executable components, but result in executable Core Objects when
cloned.

●  Hardware Abstraction Layer (HAL)
●  Abstracts the communication channel with modem.

●  Hooks
●  Mechanism to tap Requests/Notifications of other Telephony Modules of

interest.

8

Architecture | Telephony Components

The major components of Telephony are –
●  Telephony libraries

●  Telephony API (TAPI) library
●  Core Telephony library

●  Telephony Plug-ins
●  Communicator plug-ins
●  Modem plug-ins
●  Modem Interface plug-ins (HAL)
●  Free Style plug-ins

●  Telephony Server

9

Architecture | Overview

10

Architecture | TAPI library

●  Telephony API library (or simply TAPI) is a standardized interface
provided to applications to interact with Telephony over DBUS.

●  TAPI is provided as libslp_tapi and executes in application’s context.
●  TAPI provides Sync and Async APIs.

11

Architecture | Telephony Core library

●  Core Telephony library (or simply libtcore) provides an API framework
for Telephony components to inter-work.

●  It is provided as libtcore package.

12

Architecture | Plug-ins

13

Architecture | Telephony Server

Tizen2.1 Features

15

Tizen2.1 Features | Design consideration

●  Optimize the support of various types of
modem architectures from same vendor.

●  Modem plug-in needs to be hardware
agnostic.

●  Modem Interface plug-in is the adaptation
layer between the telephony framework
and the hardware of your target device

●  Avoid code duplication by introducing
 Core object templates and operations

over-riding.

Modem plug-in

Modem I/F plug-in
 B

Modem A

Modem I/F plug-in
 A

Modem B

Same	
 Vendor	

TTY

C
A

IF

16

Tizen2.1 Features | Core Object cloning

●  Core Objects can be cloned from
ready-to-use Template Core Objects

●  Template Core Objects are stored in
Server

●  Cloned Core object is Executable

17

Tizen2.1 Features | Over-riding operations

●  Operations over-riding enables Vendors to customize the Core Objects
●  Over-riding can vary from 0 – 100 %
●  Callbacks for notification(s) can also be over-rided

18

Tizen2.1 Features | CMUX support

●  3GPP TS 27.010 – Terminal Equipment to Mobile Station (TE-MS)
multiplexer protocol is supported

●  Currently supports Basic mode operation
●  Enables different Core Objects (CALL, SIM, SMS, etc) to interact with

Modem concurrently through multiple CMUX channels

19

Tizen2.1 Features | Internal CMUX
●  Internal CMUX uses CMUX

feature of libtcore
●  Each Logical HAL has a dedicated

CMUX channel
●  Logical HALs can be shared

between Core Objects
●  The HAL assignment to Core

Objects is done by the mapping
table Mapping	
 Table

Setup
Mapping table

M
ap

pi
ng

 ta
bl

e
re

fe
re

nc
e

HAL1 SMS
CALL

HAL3

HAL2 SIM
SAT

Network

20

Tizen2.1 Features | Kernel CMUX
●  The MUX driver is an open

source implementat ion
(N_GSM) of the 3GPP
27.010

●  Multiple Physical HALs
exist, each has a dedicated
Kernel CMUX channel

●  Physical HALs can be
s h a r e d b e t w e e n C o r e
Objects

Mapping	

Table

Mapping table
reference

Setup
Mapping table

HAL1 SMS
CALL

HAL3

HAL2 SIM
SAT

Network

21

Tizen2.1 Features | Hardware agnostic Modem plug-in

●  Same Modem plug-in can operate across various types of modem architectures
(from same vendor)

●  Hardware specific adaptation are required ONLY in Modem Interface plug-in

Modem Modem

Modem Plug-in

Kernel space

Modem Interface Plug-in

Physical
HAL

Physical
HAL

D
riv

er

D
riv

er

Modem Interface Plug-in

Physical
HAL

D
riv

er
 D
riv

er

D
riv

er

Logical HAL Logical HAL

Call Flows

23

Call Flows | Boot-up sequence

Communicator
Plugin

Server

Init

Load Load

Load

Call Init

Call Init

Call Init

Init

Init

Template CO
plug-in

Modem
Interface

Basic	
 plug-­‐in	

folder	

Create
communicator

24

Event
ADDED_PLUGIN

Load and
Initialize
modem plug-in

Call Flows | Initial sequence
Communicator Modem Modem

Interface Modem plug-in Server

Init Modem Interface plug-in

Modem communication setup
Registers Modem

Mux Setup

Check Modem state

Mux Setup

Requests specific modem plugin loading

Init
Create physical HAL(s)

Initialize
sub-modules and

clone Core Objects

Assign logical or physical HALs
to Core Object type

Creates
interfaces

for the Sub-
modules
present

Modem Ready

Add
Modem
item

Setup
Mapping
table

25

Call Flows | Application request sequence
Communicator Modem

Interface Modem plug-in Server

Dispatch User Request

HAL Send Request
data

Creates User
Request

TAPI

App Req

Plug-in

Core
Object

Modem

Find the
Core
object

?

Dispatch
User Request

Find the
Plug-in

?

Core
Object

function
dispatcher

Enqueue Pending

26

Call Flows | Solicited Response sequence
Communicator Modem

Interface Modem plug-in

Response data

Prepare and
send the
response

TAPI Modem

Send response to
communicator

Pop pending request
from the HAL queue

Emit pending
response

Parse response
Prepare UR response

Response Callback

Invoke
Application
callback for

async answer

Server

Noti /
Resp?

27

Call Flows | Unsolicited Response sequence
Communicator Modem

Interface Modem plug-in

Unsolicited result
 code

Prepare and send
the notification

TAPI Modem

Dispatch
 notification

Emit unsolicited
message

Invoke
callback for

event

Server

Noti/
Resp?

Communicator

Invoke
Hook
functions

Invoke
Notification
Callback
Registered
by Core
Objects

Porting Telephony

29

Porting Telephony | Implementing plug-ins
●  All telephony plug-ins mandatorily need to provide a descriptor structure

●  OEM vendors can customize each and every Telephony plug-in as per their
needs.

●  It is NOT mandatory that all the plug-ins need to be changed to support a
specific hardware.

Descriptor	
 Structure	
 Descrip4on	
 of	
 structure	
 elements	

struct tcore_plugin_define_desc { Structure	
 referred	
 by	
 Telephony	
 Server	
 to	
 load,	
 iniFalize,	
 and	
 unload	
 the	
 Plug-­‐in.	

 gchar *name; 	
 	
 	
 	
 	
 Name	
 of	
 Plug-­‐in	

 enum tcore_plugin_priority priority; 	
 	
 	
 	
 	
 IniFalizing	
 priority	
 of	
 the	
 Plug-­‐in	

 int version; 	
 	
 	
 	
 	
 Plug-­‐in	
 version	

 gboolean (*load)(); 	
 	
 	
 	
 	
 Plug-­‐in	
 load	
 funcFon	
 reference	

 gboolean (*init)(TcorePlugin *); 	
 	
 	
 	
 	
 Plug-­‐in	
 init	
 funcFon	
 reference	

 void (*unload)(TcorePlugin *); 	
 	
 	
 	
 	
 Plug-­‐in	
 unload	
 funcFon	
 reference	

};

30

Porting Telephony | Vendor plug-in requisites

●  Modem Interface plug-in
●  Establish connection to modem, additionally if required setup CMUX (either internal

or Kernel)
●  Create HALs (Logical and/or Physical)
●  Register new modem into server
●  Assign Core Object types to HALs (logical or physical) and update Mapping Table

with the corresponding assignments
●  Request Server to load modem specific Modem plug-in

●  Modem plug-in
●  Clone and initialize the Core Objects according the Mapping Table
●  Override the operations and callbacks (if required)
●  Start Telephony functionalities

Future work

32

Future work

●  USB data dongle support
●  VoLTE support
●  CDMA modem support
●  Multi-SIM

