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Introduction | Feature Overview 

●  Offers rich functionalities 
§  Voice Call and Messaging services 
§  Supplementary services, USSD 
§  SIM, Phonebook, SAT 
§  Packet and A-GPS services 
§  Network services (LTE, 3G/2G) 

 
●  Plug-in based Architecture 

§  Modem Agnostic 
§  Flexible and easily customizable as per OEM needs 
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Introduction | Feature Overview 

●  Commercial ready 
●  Verified on Ref.Device-210 and Ref.Device-PQ  
●  Verified on Intel Medfield device 

●  License 
●  Apache License Version 2.0 

●  Reference plugin available 
●  AT commands (3GPP 27.007/ 27.010) based plugin 



Architecture 
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Architecture | Definitions 
●  Core Objects 

●  Executable components of a Telephony Module (SIM, CALL, SS, etc.). 
●  Bundle of functions and supportive database information designated to the 

Module. 
●  Template Core Objects 

●  Non-Executable components, but result in executable Core Objects when 
cloned. 

●  Hardware Abstraction Layer (HAL) 
●  Abstracts the communication channel with modem. 

●  Hooks 
●  Mechanism to tap Requests/Notifications of other Telephony Modules of 

interest. 
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Architecture | Telephony Components 

The major components of Telephony are – 
●  Telephony libraries 

●  Telephony API (TAPI) library 
●  Core Telephony library 

●  Telephony Plug-ins 
●  Communicator plug-ins 
●  Modem plug-ins 
●  Modem Interface plug-ins (HAL) 
●  Free Style plug-ins 

●  Telephony Server 
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Architecture | Overview 
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Architecture | TAPI library 

●  Telephony API library (or simply TAPI) is a standardized interface 
provided to applications to interact with Telephony over DBUS. 

●  TAPI is provided as libslp_tapi  and executes in application’s context. 
●  TAPI provides Sync and Async APIs. 
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Architecture | Telephony Core library 

●  Core Telephony library (or simply libtcore) provides an API framework 
for Telephony components to inter-work. 

●  It is provided as libtcore package. 
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Architecture | Plug-ins 
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Architecture | Telephony Server 



Tizen2.1 Features 
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Tizen2.1 Features | Design consideration 

●  Optimize the support of various types of 
modem architectures from same vendor. 

●  Modem plug-in needs to be hardware 
agnostic. 

●  Modem Interface plug-in is the adaptation 
layer between the telephony framework 
and the hardware of your target device 

●  Avoid code duplication by introducing 
   Core object templates and operations 

over-riding.  
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Tizen2.1 Features | Core Object cloning 

●  Core Objects can be cloned from 
ready-to-use Template Core Objects 

●  Template Core Objects are stored in 
Server 

●  Cloned Core object is Executable 
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Tizen2.1 Features | Over-riding operations 

●  Operations over-riding enables Vendors to customize the Core Objects 
●  Over-riding can vary from 0 – 100 % 
●  Callbacks for notification(s) can also be over-rided 
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Tizen2.1 Features | CMUX support 

●  3GPP TS 27.010 – Terminal Equipment to Mobile Station (TE-MS) 
multiplexer protocol is supported 

●  Currently supports Basic mode operation 
●  Enables different Core Objects (CALL, SIM, SMS, etc) to interact with 

Modem concurrently through multiple CMUX channels 
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Tizen2.1 Features | Internal CMUX 
●  Internal CMUX uses CMUX 

feature of libtcore 
●  Each Logical HAL has a dedicated 

CMUX channel 
●  Logical HALs can be shared 

between Core Objects 
●  The HAL assignment to Core 

Objects is done by the mapping 
table Mapping	
  Table 
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Tizen2.1 Features | Kernel CMUX 
●  The MUX driver is an open 

source implementat ion 
(N_GSM) of the 3GPP 
27.010 

●  Multiple Physical HALs 
exist, each has a dedicated 
Kernel CMUX channel 

●  Physical HALs can be 
s h a r e d b e t w e e n C o r e 
Objects 
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Tizen2.1 Features | Hardware agnostic Modem plug-in 

●  Same Modem plug-in can operate across various types of modem architectures 
(from same vendor) 

●  Hardware specific adaptation are required ONLY in Modem Interface plug-in 
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Call Flows 
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Call Flows | Boot-up sequence 
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Event  
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Call Flows | Initial sequence 
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Call Flows | Application request sequence 
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Call Flows | Solicited Response sequence 
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Call Flows | Unsolicited Response sequence 
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Porting Telephony | Implementing plug-ins 
●  All telephony plug-ins mandatorily need to provide a descriptor structure 

●  OEM vendors can customize each and every Telephony plug-in as per their 
needs. 

●  It is NOT mandatory that all the plug-ins need to be changed to support a 
specific hardware. 

Descriptor	
  Structure	
   Descrip4on	
  of	
  structure	
  elements	
  
struct tcore_plugin_define_desc { Structure	
  referred	
  by	
  Telephony	
  Server	
  to	
  load,	
  iniFalize,	
  and	
  unload	
  the	
  Plug-­‐in.	
  

    gchar *name; 	
  	
  	
  	
  	
  Name	
  of	
  Plug-­‐in	
  
    enum tcore_plugin_priority priority; 	
  	
  	
  	
  	
  IniFalizing	
  priority	
  of	
  the	
  Plug-­‐in	
  
    int version; 	
  	
  	
  	
  	
  Plug-­‐in	
  version	
  
    gboolean (*load)(); 	
  	
  	
  	
  	
  Plug-­‐in	
  load	
  funcFon	
  reference	
  
    gboolean (*init)(TcorePlugin *); 	
  	
  	
  	
  	
  Plug-­‐in	
  init	
  funcFon	
  reference	
  
    void (*unload)(TcorePlugin *); 	
  	
  	
  	
  	
  Plug-­‐in	
  unload	
  funcFon	
  reference	
  

}; 
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Porting Telephony | Vendor plug-in requisites 

●  Modem Interface plug-in 
●  Establish connection to modem, additionally if required setup CMUX (either internal 

or Kernel) 
●  Create HALs (Logical and/or Physical) 
●  Register new modem into server 
●  Assign Core Object types to HALs (logical or physical) and update Mapping Table 

with the corresponding assignments 
●  Request Server to load modem specific Modem plug-in 

●  Modem plug-in 
●  Clone and initialize  the Core Objects according the Mapping Table 
●  Override the operations and callbacks (if required) 
●  Start Telephony functionalities 



Future work 
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Future work 

●  USB data dongle support 
●  VoLTE support 
●  CDMA modem support 
●  Multi-SIM 




